Nonstandard finite difference variational integrators for nonlinear Schrödinger equation with variable coefficients
نویسندگان
چکیده
منابع مشابه
Nonstandard Finite Difference Variational Integrators for Multisymplectic PDEs
We use the idea of nonstandard finite difference methods to derive the discrete variational integrators for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator for linear wave equation with a triangle discretization and two nonstandard finite difference variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization and a square ...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملFinite Element Methods for Variational Integrators with Applications to Nonlinear Schrödinger Equation
In this paper we introduce a new method of spatio-temporal discretization for partial differential equations in variational form. This method generalizes the method of Marsden et al in that it uses a systematic approach to discrete jet spaces based on the finite element method. The resulting method is used to derive integrators for the Nonlinear Schrödinger (NLS) equation which exhibit superior...
متن کاملUniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator
We establish uniform error estimates of finite difference methods for the nonlinear Schrödinger equation (NLS) perturbed by the wave operator (NLSW) with a perturbation strength described by a dimensionless parameter ε (ε ∈ (0, 1]). When ε → 0+, NLSW collapses to the standard NLS. In the small perturbation parameter regime, i.e., 0 < ε 1, the solution of NLSW is perturbed from that of NLS with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2013
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2013-12